1、數(shù)據(jù)收集挑戰(zhàn)
在精準(zhǔn)農(nóng)業(yè)用例中,大量數(shù)據(jù)來(lái)自不同來(lái)源。合并來(lái)自各種來(lái)源的數(shù)據(jù)引發(fā)了對(duì)信息質(zhì)量和信息合并問(wèn)題的擔(dān)憂,而對(duì)收集到的海量信息的訪問(wèn)引發(fā)了對(duì)安全和保護(hù)的擔(dān)憂。數(shù)據(jù)驅(qū)動(dòng)技術(shù)要求使用未受污染且適用的信息。不完整的數(shù)據(jù)集會(huì)抹掉信息,而訓(xùn)練集中存在的異常或傾向會(huì)影響模型精度。
2、大數(shù)據(jù)分析技術(shù)的挑戰(zhàn)
為了控制與精準(zhǔn)農(nóng)業(yè)或智能農(nóng)業(yè)相關(guān)的數(shù)據(jù)集,分析技術(shù)需要在一定程度上采用對(duì)齊和分布式手段,計(jì)算復(fù)雜度高。人工智能和分布式計(jì)算執(zhí)行程序的集成提供了處理海量數(shù)據(jù)的潛在方法。
3、管理不斷增長(zhǎng)的數(shù)據(jù)和實(shí)時(shí)可擴(kuò)展性
在植物生長(zhǎng)監(jiān)測(cè)期間,通過(guò)多個(gè)設(shè)備逐步生成大量圖像和視頻,這給存儲(chǔ)和處理所有這些數(shù)據(jù)帶來(lái)了一些挑戰(zhàn)。農(nóng)業(yè)中產(chǎn)生的大部分?jǐn)?shù)據(jù)都是無(wú)定形或半結(jié)構(gòu)化的,無(wú)法穩(wěn)定地存儲(chǔ)在 MySQL、SQL Server 等常用數(shù)據(jù)庫(kù)中。
返回列表